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Abstract

Purpose—To determine whether systematic differences were present between myocardial R2* 

values obtained with two different decay models: truncation and exponential-plus-constant (Exp-

C).

Methods—Single-center cohorts were used to compare black and bright blood sequences 

separately and a multi-center cohort of mixed bright and black blood studies was used to assess 

the generalizability. Truncated exponential estimates were calculated with CMRTools that uses a 

single region of interest (ROI) method. Exp-C estimates were calculated using a pixelwise 

approach.

Results—No differences could be distinguished based upon whether a white or black blood 

sequence was examined. The two fitting algorithms gave similar R2* values, with R-squared 

values exceeding 0.997 and CoV of 3–4%. Results using the pixelwise method yielded a small 

systematic bias (~3%) that became apparent in patients with severe iron deposition. This disparity 

disappeared when Exp-C fitting was used on a single ROI suggesting that the use of pixelwise 

mapping was responsible for the bias. In the multicenter cohort the strong agreement between the 

two fitting approaches was reconfirmed.

Conclusion—Cardiac R2* values are independent of the signal model used for its calculation 

over clinically relevant ranges. Clinicians can compare results among centers using these disparate 

approaches with confidence.
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INTRODUCTION

Estimation of myocardial iron stores is essential for preventing cardiac disease and 

managing chelation treatment in patients with thalassemia, sickle cell disease, aplastic 

anemia, myelodysplasia, and other iron-related diseases (1,2). Cardiovascular magnetic 

resonance (CMR) is noninvasive and clinically validated for this purpose (3,4). Iron causes 

the darkening of gradient-echo CMR images and the rate of darkening (R2*) is proportional 

to the tissue iron content (5); the inverse of R2*, called T2*, is also commonly used to 

characterize cardiac iron burden.

The R2* value is obtained by fitting the CMR signal at different echo times (TEs) to an 

appropriate decay model. In heavily iron-overloaded hearts, the rapid signal loss leads to a 

plateau in the signal decay curve at later echo times. In this situation, fitting a simple mono-

exponential model to all of the echo times produces large R2* underestimation errors (6,7). 

Two approaches are used to resolve this problem. The first approach (truncation model) 

consists of manually limiting the mono exponential equation to a few echo times. 

Measurements are calculated from a full-thickness septal region of interest (ROI). This 

approach has been implemented within different validated softwares: the CMRTools 

(Cardiovascular Imaging Solutions Ltd, London, UK), used firstly by the Pennell’s group 

(7,8) and acquired by different CMR centers worldwide (9,10), the HIPPO MIOT®, used by 

the 8 CMR centers of the Myocardial Iron Overload in Thalassemia (MIOT) Network 

(11,12), and the CMR42 (Circle Cardiovascular Imaging, Canada). The second approach 

consists in fitting the signal with an exponential plus a constant offset. R2* values are 

calculated from every pixel in the interventricular septum and the median R2* is reported. It 

is advocated by some, including our laboratory (6), and recently has been independently 

implemented in an open-source software (13).

It is important for patient management that the calculated R2* values (or T2* values) are 

independent from the software used. Two prior reports suggested that large differences may 

exist (7,14). Thus we compared cardiac R2* values using the two fitting models in two 

disparate patient populations to determine whether systematic differences were evident.

METHODS

Study population

Two single-center cohorts and one multi-center cohort of patients were considered. The first 

single-center cohort included 42 patients (24 with thalassemia major, 13 with sickle cell 

disease, and 5 with other iron-related diseases) scanned using a black blood T2* technique. 

Mean age was 19.3 ± 10.1 years and 21 patients were females. The second single-center 

cohort included 70 patients (31 with thalassemia major, 21 with sickle cell disease, and 18 

with other iron-related diseases) scanned using a white-blood T2* technique. Mean age was 

18.7 ± 10.9 years and 30 patients were females. Our thalassemia cohort is 24% Chinese, 

20% other Southeast Asia (Vietnamese, Laotian, Cambodian, Thai, Filipino), 17% Indian 

Subcontinent (Indian, Pakastani), 23% Mediterranean (Italian, Greek, Cypriot), 9% Middle 

Eastern (Iranian, Lebanese, Iraqi, Saudia Arabia) and 4.5% Hispanic and 2.5% other ethnic 

backgrounds. Our sickle cell disease cohort is 95% African descent and 5% Hispanic.

Meloni et al. Page 2

Magn Reson Med. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Multicenter data represented baseline measurements from a phase II clinical trial of 

FBS0701 (15). These data were used as a test set because they were collected according to 

local, clinical practice from eight major thalassemia centers. Half of the centers used white-

blood acquisitions and half used black-blood techniques. Sixty-two patients of mixed race 

(17 Asian, 5 Black, 5 Thai and 35 White) participated with sites contributing between four 

and thirteen examinations (median, seven cases). Thirty patients were females and mean age 

was 27.9 ± 8.9 years. Fifty-eight patients suffered from thalassemias and 4 from sickle cell 

disease and all were regularly transfused and chelated.

The distribution of the patients is reported in Table 1.

The protocol was approved by The Children’s Hospital of Los Angeles’ Committee for the 

Protection of Human Subjects (Protocol # CCI-12-00087) and the institutional review 

boards of all participating hospitals. The requirement for consent was waived for the 

retrospective data analysis. All patients in the prospective FBS0701 trial gave written 

informed consent.

MRI Acquisition

Both single-center cohorts underwent CMR at the Children’s Hospital of Los Angeles 

(CHLA), but using two different 1.5T scanners: a Philips Achieva (Philips Medical Systems, 

Best, The Netherlands) running system 2.5.1 and a GE Signa CVi (GE Healthcare, 

Waukesha, WI) running system 9.1; similar phased array torso coils were used on both. 

Black blood multiecho gradient echo images were used to calculate R2* on the Philips while 

bright blood multiecho gradient echo R2* sequence was used on the GE scanner.

For the multi-center cohort gradient echo images were acquired on 1.5T scanners from all 3 

major MR vendors. Black or bright blood acquisitions were used (Figure 1).

At the CHLA as well as in all the other sites a single short axis mid-ventricular slice was 

acquired. All R2* sequence parameters are indicated in Table 1.

R2* measurement

All images were processed by the same operator. Identical regions of interest (ROI’s) were 

drawn in the mid-ventricular septum for both techniques. Truncated exponential estimates 

were calculated using CMRTools. It calculates the mean signal intensity of the ROI for each 

image and fits the decay curve to a mono-exponential model:

[1]

where S=fitted signal, S0=initial amplitude, TE=echo time. The R-square value describing 

the goodness of fitting was used by the operator as guide in the application of the truncation 

model. If the R-square value was > 0.99, no truncation was applied. Otherwise, the last 

points were discarded in succession until the R-square value became > 0.99. Finally, the R2* 

value was calculated as 1000/T2*.
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Exponential + constant (Exp-C) estimates were calculated using a rapid pseudo-pixelwise 

implementation written in MATLAB (The Mathworks, Natick, MA). This software, called 

Iron, divides the ROI into subregions of similar-relaxivity; the number of pixels in each 

subregion is equal to the square-root of the total number of pixels in the traced ROI. Each 

subregions is fitted to a Exp-C model:

[2]

where S=fitted signal, S0=initial amplitude, TE=echo time, R2* is the relaxivity, and C is 

the constant offset term. A distribution of R2* values is produced and the mean and median 

from this distribution are obtained (16). We also implemented equation 2 over the entire 

ROI, similar to CMRTools, to distinguish whether differences in measured R2* values 

resulted from the underlying fitting model (equations 1 and 2) or from the use of a pixelwise 

rather than a region-based approach.

Hereafter we refer to the R2* values obtained with the CMRTools as R2*CMRTools and to 

the R2* values obtained using Iron as R2*Iron-mean (mean of R2* distribution taken into 

account), R2*Iron-median (median of R2* distribution taken into account) and 

R2*Iron_ROI_based (single ROI).

Statistical analysis

All data were analyzed using SPSS version 16.0 (SPSS Inc., Chicago, IL, USA) and 

MedCalc for Windows version 7.2.1.0 (MedCalc Software, Mariakerke, Belgium) statistical 

packages.

Continuous variables were described as mean ± standard deviation (SD).

Summary data were displayed using scatter plots with regression lines. Linear regression 

models provided slope and intercept estimates and the R-squared measuring the goodness of 

the linear fit. Because R2* values were not normally distributed, a paired Wilcoxon signed 

rank test was applied to detect significant differences between two datasets while the 

Spearman correlation coefficient was used to assess their relationship. A coefficient of 

variation (CoV) was calculated as the ratio of the SD of the half mean square of the 

differences between the repeated values, to the general mean. The Bland-Altman (BA) 

technique was used to plot the absolute difference (standard BA) or the percent difference 

(relative BA) versus the average values between two datasets. The relative Bland-Altman 

plot was preferred when the variability of the differences increased as the magnitude of the 

measurements increased. Bias was the mean of the difference between the two methods and 

agreement was the mean ± 1.96 SDs.

A P value < 0.05 was considered statistically significant.
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RESULTS

First single-center cohort: black blood images

Figure 2a (left) shows R2*Iron-mean values as a function of R2*CMRTools values. The line of 

best fit had a slope of 1.031 ± 0.005, significantly different from 1 (P<0.0001), and an 

intercept of −1.176 ± 0.379 Hz. The R-squared value for the fit was 0.999. The R2*Iron-mean 

values were not significantly different from R2*CMRTools values (48.5 ± 54.7 Hz vs 48.2 ± 

53.1 Hz, P=0.945). Bland-Altman analysis demonstrated no significant bias between the two 

techniques, with limits of agreement of 4.8 Hz (Figure 2a, right). The CoV was 3.5%.

Relationships between R2*Iron-median and R2*CMRTools as well between R2*Iron-ROI_based 

and R2*CMRTools was nearly identical to results for R2*Iron-mean, being well described by a 

straight line. In both cases Bland-Altman analysis demonstrated good agreement and the 

CoV was less than 4.4% (Table 2a).

Second single-center cohort: bright blood images

Figure 2b (left) shows R2*Iron-mean values as a function of R2*CMRTools values. The line of 

best fit had a slope of 1.025 ± 0.005, significantly different from 1 (P<0.0001), and an 

intercept of −0.741 ± 0.300 Hz. The R-squared value for the fit was 0.998. The R2*Iron-mean 

values were not significantly different from R2*CMRTools values (47.6 ± 37.9 Hz vs 47.2 ± 

36.9 Hz, P=0.088). Bland Altman analysis demonstrated no significant bias between the two 

techniques, with limits of agreement of 3.5 Hz (Figure 2b, right). a trend toward higher 

values using the Exp-C method The CoV was 2.7%.

The results of the comparison between R2*Iron-median and R2*CMRTools and between 

R2*Iron-ROI_based and R2*CMRTools are indicated in Table 2b. In both cases a strong linear 

relationship was demonstrated, the Bland-Altman analysis demonstrated no significant bias 

and the CoV was less than 3.5%.

Multi-center cohort

Figure 2c (left) shows R2*Iron-mean values as a function of R2*CMRTools values. The line of 

best fit had a slope of 0.989 ± 0.008, not significantly different from 1 (P=0.148), and an 

intercept of 0.108 ± 0.372 Hz. The R-squared value for the fit was 0.997. The R2*Iron-mean 

values were not significantly different from R2*CMRTools values (43.5 ± 22.6 Hz vs 43.8 ± 

22.7 Hz, P=0.250). The CoV was 2.3%. Figure 2c (right) shows the Bland-Altman plot.

The results of the comparison between R2*Iron-median and R2*CMRTools and between 

R2*Iron-ROI_based and R2*CMRTools are indicated in Table 2c. In both cases a strong linear 

relationship was found out and the CoV was under 2.3%.

Patients with cardiac iron

As can be inferred from the both the linear regression analysis and Bland-Altman plots, the 

pixelwise, Exp-C analysis yields slightly higher values at larger R2*s. To better characterize 

that effect for an acceptable number of patients (N=45), we pooled all patients with 

detectable cardiac iron (R2*CMRTools ≥ 50 Hz). Figure 3 shows the relative Bland-Altman 
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plots for this subgroup of patients for pixel-wise mean, pixel-wise median, and region-based 

application of the Exp-C model. No significant bias was detected in all three metrics. Five 

patients had T2* < 6 ms. In these patients, the pixelwise mean and median (Figure 3a and 

3b) was 3% higher than predicted by CMR Tools but this disparity disappeared when a 

global ROI was used (Figure 3c).

DISCUSSION

In the last years, CMR R2* has become a widely used accurate and noninvasive technique 

for monitoring heart iron overload in patients with different types of hemoglobinopathies 

(17,18). Potential sources of variability include image acquisition parameters and image 

analysis methods. A number of different studies have shown that this technique is 

transferable between MRI scanners in different centers (12) and from different 

manufacturers (8,19). A number of approaches are used for calculating cardiac R2* from the 

source images. Within these approaches, there is generally good intra- and inter-observer 

reproducibility for both bright blood (20) and black blood T2* CMR (21). However, some 

had reported large differences in R2* results based upon a truncated exponential fit versus 

fitting to an exponential with a constant offset (7,14), warranting a independent, systematic 

comparison of the two approaches.

In all three patient cohorts, we observed that the two fitting approaches yield similar R2* 

values with R-squared values exceeding 0.997, regardless of whether white or black blood 

images were used. More importantly, the CoV was extremely low, suggesting excellent 

stability of both techniques. Nonetheless, the regression slopes were ~3% greater than unity 

and these differences became more apparent in patients with severe iron deposition (R2* > 

100 Hz). This is in agreement with two previous studies involving the liver. Beaumont et al. 

showed that in the liver the models differences became evident for R2* values higher than 

200 Hz (22). Meloni et al. demonstrated that the relationship between hepatic R2*Iron-median 

and R2*CMRTools values was well described by a line and that results were unbiased for 

R2*<300 Hz, but large systematic differences in R2* appeared at higher values, with the 

exponential-plus-constant fits averaging ~20% higher (23). The biases arise from two 

sources, use of pixel-wise mapping rather than a region-based technique as well as the 

underlying relaxation model (Equations 1 and 2). Figure 3c suggests that it is the use of 

pixelwise mapping that is responsible for 3% bias, rather than the fitting model. When there 

is high spatial variability of tissue iron distribution, pixelwise mapping more closely reflects 

the true average tissue iron concentration than using a global ROI. Ghugre et al. (6) also 

demonstrated that, using identical signal decay models, pixelwise fits yielded 3–5% higher 

R2* values than a global ROI at high iron concentrations. Regardless of which approach 

more closely approximates true iron concentration, the systematic R2* bias between these 

approaches is so small that it is clinically irrelevant.

We used three different cohorts to probe the differences over as a broad a patient base as 

possible. We could distinguish no differences based upon whether a white or black blood 

sequence was examined. To obtain higher generalizability, we also included a multi-center 

cohort of patients scanned according to the specific protocol of their center using a mixture 

of white and black blood techniques. We reconfirmed the strong agreement between R2* 
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values obtained with the two softwares (Figure 2c). While the study was somewhat 

hampered by small number of patients having cardiac iron in any single cohort, the pooled 

sample size (N=45) was large enough to detect any significant systematic deviation. Our 

study might have been able to detect larger differences if our study populations included 

more patients with cardiac T2* < 5 ms, but such patients are becoming rare at institutions 

performing routine cardiac screening because diagnosis triggers intensified therapy and they 

tend to present with heart failure or death at centers lacking MRI screening. Since the 

therapy of any patient whose T2* is < 5 ms should be maximally escalated, our current data 

completely spans the clinically-relevant range. Furthermore our data from liver suggest the 

maximum error is < 15% and is detectable only when T2* falls below 3 ms (23). We cannot 

explain why we were unable to replicate the findings of He et al (7), however the lack of 

systematic bias explains why our initial in-vitro calibration curve (4) agrees closely with 

more recent data analyzed using CMRTools (18).

In conclusion, we showed that the cardiac R2* values are independent of the signal model 

(Equation 1 or 2) used for its calculation. Software using a pixel-wise approach will yield 

R2* values approximately 3% greater than for a region-base approach in severely iron 

overloaded subjects, similar to prior simulations (6). The overall variability among these 

techniques is exceeding small and negligible clinically. Thus, it is not likely to significantly 

affect clinical management or indeed lead to inappropriate management of patients. 

Moreover, clinicians can compare results with confidence among centers using these 

disparate approaches.
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Figure 1. 
Typical black blood (left) and bright blood (right) short-axis mid-ventricular images at the 

first echo time.
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Figure 2. 
Comparison between R2*Iron-mean values and R2*CMRTools values for a) the first single-

center cohort (black blood images), b) the second single-center cohort (bright blood images) 

and c) the multi-center cohort. Left: Scatter plot with regression line (solid line). The dotted 

line is the line of identity. Right: Bland-Altman plot of absolute differences. Dotted lines 

indicate the limits of agreement.
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Figure 3. 
Agreement between the two methods for all patients with detectable cardiac iron. Relative 

Bland-Altman plots for a) R2*Iron-mean and R2*CMRTools values, b) R2*Iron-median and 

R2*CMRTools values and c) R2*Iron-ROI_based and R2*CMRTools values.
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